feat: Fix misleading doc.

This commit is contained in:
Thorben Höhne 2025-05-04 16:30:02 +02:00
parent 77d39b6254
commit 81ef16cc99
Signed by: thoehne
GPG Key ID: 60D202D915B81DEC

View File

@ -7,63 +7,64 @@
#include "Core/Math/Vector2.hpp" #include "Core/Math/Vector2.hpp"
#ifndef MATRIX2_H #ifndef MATRIX2_H
#define MATRIX2_H # define MATRIX2_H
namespace Phanes::Core::Math { namespace Phanes::Core::Math
{
// 2x2 Matrix defined in column-major order. // 2x2 Matrix defined in column-major order.
// Accessed by M[Row][Col]. // Accessed by M[Col][Row].
template<RealType T> template <RealType T>
struct TMatrix2 struct TMatrix2
{ {
public: public:
union
{
struct
{
/// <summary>
/// Column one.
/// </summary>
TVector2<T, false> c0;
union /// <summary>
{ /// Column two
struct /// </summary>
{ TVector2<T, false> c1;
/// <summary> };
/// Column one.
/// </summary>
TVector2<T, false> c0;
/// <summary> T data[2][2];
/// Column two };
/// </summary>
TVector2<T, false> c1;
};
T data[2][2]; public:
}; TMatrix2() = default;
public: /**
TMatrix2() = default;
/**
* Copy constructor. * Copy constructor.
*/ */
TMatrix2(const TMatrix2<T>& m1) TMatrix2(const TMatrix2<T>& m1)
{ {
this->c0 = m1.c0; this->c0 = m1.c0;
this->c1 = m1.c1; this->c1 = m1.c1;
} }
/** /**
* Construct Matrix from 2d array. * Construct Matrix from 2d array.
* *
* @param(fields) 2D Array with column major order. * @param(fields) 2D Array with column major order.
*/ */
TMatrix2(T fields[2][2]) TMatrix2(T fields[2][2])
{ {
this->data[0][0] = fields[0][0]; this->data[1][0] = fields[1][0]; this->data[0][0] = fields[0][0];
this->data[0][1] = fields[0][1]; this->data[1][1] = fields[1][1]; this->data[1][0] = fields[1][0];
} this->data[0][1] = fields[0][1];
this->data[1][1] = fields[1][1];
}
/** /**
* Construct Matrix from parameters. * Construct Matrix from parameters.
* *
* @param(n00) M[0][0] * @param(n00) M[0][0]
@ -74,285 +75,277 @@ namespace Phanes::Core::Math {
* @note nXY = n[Row][Col] * @note nXY = n[Row][Col]
*/ */
TMatrix2(T n00, T n01, T n10, T n11) TMatrix2(T n00, T n01, T n10, T n11)
{ {
this->data[0][0] = n00; this->data[1][0] = n01; this->data[0][0] = n00;
this->data[0][1] = n10; this->data[1][1] = n11; this->data[1][0] = n01;
} this->data[0][1] = n10;
this->data[1][1] = n11;
}
/** /**
* Construct Matrix from two 2d vector columns. * Construct Matrix from two 2d vector columns.
* *
* @param(v1) Column zero * @param(v1) Column zero
* @param(v2) Column one * @param(v2) Column one
*/ */
TMatrix2(const TVector2<T, false>& v1, const TVector2<T, false>& v2) TMatrix2(const TVector2<T, false>& v1, const TVector2<T, false>& v2)
{ {
this->c0 = v1; this->c0 = v1;
this->c1 = v2; this->c1 = v2;
} }
public: public:
T& operator()(int n, int m)
{
return this->data[m][n];
}
T operator()(int n, int m) const
{
return this->data[m][n];
}
T& operator() (int n, int m) TVector2<T, false>& operator[](int m)
{ {
return this->data[m][n]; switch(m)
} {
case 0:
return this->c0;
case 1:
return this->c1;
}
T operator() (int n, int m) const throw std::invalid_argument("m is outside valid range.");
{ }
return this->data[m][n];
}
TVector2<T, false>& operator[] (int m) TVector2<T, false> operator[](int m) const
{ {
switch (m) switch(m)
{ {
case 0: case 0:
return this->c0; return this->c0;
case 1: case 1:
return this->c1; return this->c1;
} }
throw std::invalid_argument("m is outside valid range."); throw std::invalid_argument("m is outside valid range.");
} }
};
TVector2<T, false> operator[] (int m) const // ====================== //
{ // TMatrix2 operator //
switch (m) // ====================== //
{
case 0:
return this->c0;
case 1:
return this->c1;
}
throw std::invalid_argument("m is outside valid range."); template <RealType T>
} TMatrix2<T>& operator+=(TMatrix2<T>& m1, T s)
{
m1(0, 0) += s;
m1(0, 1) += s;
m1(1, 0) += s;
m1(1, 1) += s;
}; return m1;
}
// ====================== // template <RealType T>
// TMatrix2 operator // TMatrix2<T>& operator+=(TMatrix2<T>& m1, const TMatrix2<T>& m2)
// ====================== // {
m1(0, 0) += m2(0, 0);
m1(0, 1) += m2(0, 1);
m1(1, 0) += m2(1, 0);
m1(1, 1) += m2(1, 1);
template<RealType T> return m1;
TMatrix2<T>& operator+= (TMatrix2<T>& m1, T s) }
{
m1(0, 0) += s;
m1(0, 1) += s;
m1(1, 0) += s;
m1(1, 1) += s;
return m1; template <RealType T>
} TMatrix2<T>& operator-=(TMatrix2<T>& m1, T s)
{
m1(0, 0) -= s;
m1(0, 1) -= s;
m1(1, 0) -= s;
m1(1, 1) -= s;
template<RealType T> return m1;
TMatrix2<T>& operator+= (TMatrix2<T>& m1, const TMatrix2<T>& m2) }
{
m1(0, 0) += m2(0, 0);
m1(0, 1) += m2(0, 1);
m1(1, 0) += m2(1, 0);
m1(1, 1) += m2(1, 1);
return m1; template <RealType T>
} TMatrix2<T>& operator-=(TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
m1(0, 0) -= m2(0, 0);
m1(0, 1) -= m2(0, 1);
m1(1, 0) -= m2(1, 0);
m1(1, 1) -= m2(1, 1);
template<RealType T> return m1;
TMatrix2<T>& operator-= (TMatrix2<T>& m1, T s) }
{
m1(0, 0) -= s;
m1(0, 1) -= s;
m1(1, 0) -= s;
m1(1, 1) -= s;
return m1; template <RealType T>
} TMatrix2<T>& operator*=(TMatrix2<T>& m1, T s)
{
m1.data[0][0] *= s;
m1.data[0][1] *= s;
m1.data[1][0] *= s;
m1.data[1][1] *= s;
template<RealType T> return m1;
TMatrix2<T>& operator-= (TMatrix2<T>& m1, const TMatrix2<T>& m2) }
{
m1(0, 0) -= m2(0, 0);
m1(0, 1) -= m2(0, 1);
m1(1, 0) -= m2(1, 0);
m1(1, 1) -= m2(1, 1);
return m1; template <RealType T>
} TMatrix2<T>& operator*=(TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
TMatrix2<T> c = m1;
template<RealType T> m1(0, 0) = c(0, 0) * m2(0, 0) + c(0, 1) * m2(1, 0);
TMatrix2<T>& operator*= (TMatrix2<T>& m1, T s) m1(0, 1) = c(0, 0) * m2(0, 1) + c(0, 1) * m2(1, 1);
{
m1.data[0][0] *= s;
m1.data[0][1] *= s;
m1.data[1][0] *= s;
m1.data[1][1] *= s;
return m1; m1(1, 0) = c(1, 0) * m2(0, 0) + c(1, 1) * m2(1, 0);
} m1(1, 1) = c(1, 0) * m2(0, 1) + c(1, 1) * m2(1, 1);
template<RealType T> return m1;
TMatrix2<T>& operator*= (TMatrix2<T>& m1, const TMatrix2<T>& m2) }
{
TMatrix2<T> c = m1;
m1(0, 0) = c(0, 0) * m2(0, 0) + c(0, 1) * m2(1, 0); template <RealType T>
m1(0, 1) = c(0, 0) * m2(0, 1) + c(0, 1) * m2(1, 1); TMatrix2<T>& operator/=(TMatrix2<T>& m1, T s)
{
s = (T)1.0 / s;
m1.data[0][0] *= s;
m1.data[0][1] *= s;
m1.data[1][0] *= s;
m1.data[1][1] *= s;
m1(1, 0) = c(1, 0) * m2(0, 0) + c(1, 1) * m2(1, 0); return m1;
m1(1, 1) = c(1, 0) * m2(0, 1) + c(1, 1) * m2(1, 1); }
return m1; template <RealType T>
} TMatrix2<T> operator+(const TMatrix2<T>& m1, T s)
{
return TMatrix2<T>(m1(0, 0) + s, m1(0, 1) + s, m1(1, 0) + s, m1(1, 1) + s);
}
template<RealType T> template <RealType T>
TMatrix2<T>& operator/= (TMatrix2<T>& m1, T s) TMatrix2<T> operator+(const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{ {
s = (T)1.0 / s; return TMatrix2<T>(
m1.data[0][0] *= s; m1(0, 0) + m2(0, 0), m1(0, 1) + m2(0, 1), m1(1, 0) + m2(1, 0), m1(1, 1) + m2(1, 1));
m1.data[0][1] *= s; }
m1.data[1][0] *= s;
m1.data[1][1] *= s;
return m1; template <RealType T>
} TMatrix2<T> operator-(const TMatrix2<T>& m1, T s)
{
return TMatrix2<T>(m1(0, 0) - s, m1(0, 1) - s, m1(1, 0) - s, m1(1, 1) - s);
}
template<RealType T> template <RealType T>
TMatrix2<T> operator+ (const TMatrix2<T>& m1, T s) TMatrix2<T> operator-(const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{ {
return TMatrix2<T>(m1(0, 0) + s, m1(0, 1) + s, return TMatrix2<T>(
m1(1, 0) + s, m1(1, 1) + s); m1(0, 0) - m2(0, 0), m1(0, 1) - m2(0, 1), m1(1, 0) - m2(1, 0), m1(1, 1) - m2(1, 1));
} }
template<RealType T> template <RealType T>
TMatrix2<T> operator+ (const TMatrix2<T>& m1, const TMatrix2<T>& m2) TMatrix2<T> operator*(const TMatrix2<T>& m1, T s)
{ {
return TMatrix2<T>(m1(0, 0) + m2(0, 0), m1(0, 1) + m2(0, 1), return TMatrix2<T>(m1(0, 0) * s, m1(0, 1) * s, m1(1, 0) * s, m1(1, 1) * s);
m1(1, 0) + m2(1, 0), m1(1, 1) + m2(1, 1)); }
}
template<RealType T> template <RealType T>
TMatrix2<T> operator- (const TMatrix2<T>& m1, T s) TMatrix2<T> operator/(const TMatrix2<T>& m1, T s)
{ {
return TMatrix2<T>(m1(0, 0) - s, m1(0, 1) - s, s = (T)1.0 / s;
m1(1, 0) - s, m1(1, 1) - s); return TMatrix2<T>(m1(0, 0) * s, m1(0, 1) * s, m1(1, 0) * s, m1(1, 1) * s);
} }
template<RealType T> template <RealType T>
TMatrix2<T> operator- (const TMatrix2<T>& m1, const TMatrix2<T>& m2) TMatrix2<T> operator*(const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{ {
return TMatrix2<T>(m1(0, 0) - m2(0, 0), m1(0, 1) - m2(0, 1), return TMatrix2<T>(m1(0, 0) * m2(0, 0) + m1(0, 1) * m2(1, 0),
m1(1, 0) - m2(1, 0), m1(1, 1) - m2(1, 1)); m1(0, 0) * m2(0, 1) + m1(0, 1) * m2(1, 1),
} m1(1, 0) * m2(0, 0) + m1(1, 1) * m2(1, 0),
m1(1, 0) * m2(0, 1) + m1(1, 1) * m2(1, 1));
}
template<RealType T> template <RealType T>
TMatrix2<T> operator* (const TMatrix2<T>& m1, T s) TVector2<T, false> operator*(const TMatrix2<T>& m1, const TVector2<T, false>& v)
{ {
return TMatrix2<T>(m1(0, 0) * s, m1(0, 1) * s, return TVector2<T, false>(m1(0, 0) * v.x + m1(0, 1) * v.y, m1(1, 0) * v.x + m1(1, 1) * v.y);
m1(1, 0) * s, m1(1, 1) * s); }
}
template<RealType T> template <RealType T>
TMatrix2<T> operator/ (const TMatrix2<T>& m1, T s) bool operator==(const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{ {
s = (T)1.0 / s; return m1[0] == m2[0] && m1[1] == m2[1];
return TMatrix2<T>(m1(0, 0) * s, m1(0, 1) * s, }
m1(1, 0) * s, m1(1, 1) * s);
}
template<RealType T> template <RealType T>
TMatrix2<T> operator* (const TMatrix2<T>& m1, const TMatrix2<T>& m2) bool operator!=(const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{ {
return TMatrix2<T>(m1(0, 0) * m2(0, 0) + m1(0, 1) * m2(1, 0), m1(0, 0) * m2(0, 1) + m1(0, 1) * m2(1, 1), return m1[0] != m2[0] || m1[1] != m2[1];
m1(1, 0) * m2(0, 0) + m1(1, 1) * m2(1, 0), m1(1, 0) * m2(0, 1) + m1(1, 1) * m2(1, 1)); }
}
template<RealType T> // ============================== //
TVector2<T, false> operator* (const TMatrix2<T>& m1, const TVector2<T, false>& v) // Matrix function definition //
{ // ============================== //
return TVector2<T, false>(m1(0, 0) * v.x + m1(0, 1) * v.y,
m1(1, 0) * v.x + m1(1, 1) * v.y);
}
template<RealType T> template <RealType T>
bool operator== (const TMatrix2<T>& m1, const TMatrix2<T>& m2) T Determinant(const TMatrix2<T>& m1)
{ {
return m1[0] == m2[0] && m1[1] == m2[1]; return m1(0, 0) * m1(1, 1) - m1(0, 1) * m1(1, 0);
} }
template<RealType T> template <RealType T>
bool operator!= (const TMatrix2<T>& m1, const TMatrix2<T>& m2) TMatrix2<T>& InverseV(TMatrix2<T>& m1)
{ {
return m1[0] != m2[0] || m1[1] != m2[1]; float _1_det = 1.0f / Determinant(m1);
} float m00 = m1(0, 0);
m1(0, 0) = m1(1, 1);
m1(0, 1) = -m1(0, 1);
m1(1, 0) = -m1(1, 0);
m1(1, 1) = m00;
// ============================== // m1 *= _1_det;
// Matrix function definition // return m1;
// ============================== // }
template<RealType T> template <RealType T>
T Determinant(const TMatrix2<T>& m1) TMatrix2<T>& TransposeV(TMatrix2<T>& m1)
{ {
return m1(0, 0) * m1(1, 1) - m1(0, 1) * m1(1, 0); Swap(m1(0, 1), m1(1, 0));
}
template<RealType T> return m1;
TMatrix2<T>& InverseV(TMatrix2<T>& m1) }
{
float _1_det = 1.0f / Determinant(m1);
float m00 = m1(0, 0);
m1(0, 0) = m1(1, 1); // =============== //
m1(0, 1) = -m1(0, 1); // WITH RETURN //
m1(1, 0) = -m1(1, 0); // =============== //
m1(1, 1) = m00;
m1 *= _1_det; template <RealType T>
return m1; TMatrix2<T> Inverse(TMatrix2<T>& m1)
} {
float _1_det = 1.0f / Determinant(m1);
template<RealType T> return TMatrix2<T>(
TMatrix2<T>& TransposeV(TMatrix2<T>& m1) m1(1, 1) * _1_det, -m1(0, 1) * _1_det, -m1(1, 0) * _1_det, m1(0, 0) * _1_det);
{ }
Swap(m1(0, 1), m1(1, 0));
return m1; template <RealType T>
} TMatrix2<T> Transpose(const TMatrix2<T>& m1)
{
return TMatrix2<T>(m1(0, 0), m1(1, 0), m1(0, 1), m1(1, 1));
}
// =============== // template <RealType T>
// WITH RETURN // bool IsIdentityMatrix(const TMatrix2<T>& m1, T threshold = P_FLT_INAC)
// =============== // {
return (abs(m1(0, 0) - (T)1.0) < P_FLT_INAC && abs(m1(0, 1)) < P_FLT_INAC &&
template<RealType T> abs(m1(1, 0)) < P_FLT_INAC && abs(m1(1, 1) - (T)1.0) < P_FLT_INAC);
TMatrix2<T> Inverse(TMatrix2<T>& m1) }
{
float _1_det = 1.0f / Determinant(m1);
return TMatrix2<T>( m1(1, 1) * _1_det, -m1(0, 1) * _1_det,
-m1(1, 0) * _1_det, m1(0, 0) * _1_det);
}
template<RealType T>
TMatrix2<T> Transpose(const TMatrix2<T>& m1)
{
return TMatrix2<T>(m1(0, 0), m1(1, 0),
m1(0, 1), m1(1, 1));
}
template<RealType T>
bool IsIdentityMatrix(const TMatrix2<T>& m1, T threshold = P_FLT_INAC)
{
return (abs(m1(0, 0) - (T)1.0) < P_FLT_INAC && abs(m1(0, 1)) < P_FLT_INAC &&
abs(m1(1, 0)) < P_FLT_INAC && abs(m1(1, 1) - (T)1.0) < P_FLT_INAC);
}
} // Phanes::Core::Math
} // namespace Phanes::Core::Math
#endif // !MATRIX2_H #endif // !MATRIX2_H
#include "Core/Math/SIMD/SIMDIntrinsics.h" #include "Core/Math/SIMD/SIMDIntrinsics.h"