2025-02-19 12:17:08 +01:00

358 lines
8.7 KiB
C++

#pragma once
#include "Core/Math/Boilerplate.h"
#include "Core/Math/MathFwd.h"
#include "Core/Math/Vector2.hpp"
#ifndef MATRIX2_H
#define MATRIX2_H
namespace Phanes::Core::Math {
// 2x2 Matrix defined in column-major order.
// Accessed by M[Row][Col].
template<RealType T>
struct TMatrix2
{
public:
union
{
struct
{
/// <summary>
/// Column one.
/// </summary>
TVector2<T, false> c0;
/// <summary>
/// Column two
/// </summary>
TVector2<T, false> c1;
};
T data[2][2];
};
public:
TMatrix2() = default;
/**
* Copy constructor.
*/
TMatrix2(const TMatrix2<T>& m1)
{
this->c0 = m1.c0;
this->c1 = m1.c1;
}
/**
* Construct Matrix from 2d array.
*
* @param(fields) 2D Array with column major order.
*/
TMatrix2(T fields[2][2])
{
this->data[0][0] = fields[0][0]; this->data[1][0] = fields[1][0];
this->data[0][1] = fields[0][1]; this->data[1][1] = fields[1][1];
}
/**
* Construct Matrix from parameters.
*
* @param(n00) M[0][0]
* @param(n10) M[1][0]
* @param(n01) M[0][1]
* @param(n11) M[1][1]
*
* @note nXY = n[Row][Col]
*/
TMatrix2(T n00, T n01, T n10, T n11)
{
this->data[0][0] = n00; this->data[1][0] = n01;
this->data[0][1] = n10; this->data[1][1] = n11;
}
/**
* Construct Matrix from two 2d vector columns.
*
* @param(v1) Column zero
* @param(v2) Column one
*/
TMatrix2(const TVector2<T, false>& v1, const TVector2<T, false>& v2)
{
this->c0 = v1;
this->c1 = v2;
}
public:
T& operator() (int n, int m)
{
return this->data[m][n];
}
T operator() (int n, int m) const
{
return this->data[m][n];
}
TVector2<T, false>& operator[] (int m)
{
switch (m)
{
case 0:
return this->c0;
case 1:
return this->c1;
}
throw std::invalid_argument("m is outside valid range.");
}
TVector2<T, false> operator[] (int m) const
{
switch (m)
{
case 0:
return this->c0;
case 1:
return this->c1;
}
throw std::invalid_argument("m is outside valid range.");
}
};
// ====================== //
// TMatrix2 operator //
// ====================== //
template<RealType T>
TMatrix2<T>& operator+= (TMatrix2<T>& m1, T s)
{
m1(0, 0) += s;
m1(0, 1) += s;
m1(1, 0) += s;
m1(1, 1) += s;
return m1;
}
template<RealType T>
TMatrix2<T>& operator+= (TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
m1(0, 0) += m2(0, 0);
m1(0, 1) += m2(0, 1);
m1(1, 0) += m2(1, 0);
m1(1, 1) += m2(1, 1);
return m1;
}
template<RealType T>
TMatrix2<T>& operator-= (TMatrix2<T>& m1, T s)
{
m1(0, 0) -= s;
m1(0, 1) -= s;
m1(1, 0) -= s;
m1(1, 1) -= s;
return m1;
}
template<RealType T>
TMatrix2<T>& operator-= (TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
m1(0, 0) -= m2(0, 0);
m1(0, 1) -= m2(0, 1);
m1(1, 0) -= m2(1, 0);
m1(1, 1) -= m2(1, 1);
return m1;
}
template<RealType T>
TMatrix2<T>& operator*= (TMatrix2<T>& m1, T s)
{
m1.data[0][0] *= s;
m1.data[0][1] *= s;
m1.data[1][0] *= s;
m1.data[1][1] *= s;
return m1;
}
template<RealType T>
TMatrix2<T>& operator*= (TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
TMatrix2<T> c = m1;
m1(0, 0) = c(0, 0) * m2(0, 0) + c(0, 1) * m2(1, 0);
m1(0, 1) = c(0, 0) * m2(0, 1) + c(0, 1) * m2(1, 1);
m1(1, 0) = c(1, 0) * m2(0, 0) + c(1, 1) * m2(1, 0);
m1(1, 1) = c(1, 0) * m2(0, 1) + c(1, 1) * m2(1, 1);
return m1;
}
template<RealType T>
TMatrix2<T>& operator/= (TMatrix2<T>& m1, T s)
{
s = (T)1.0 / s;
m1.data[0][0] *= s;
m1.data[0][1] *= s;
m1.data[1][0] *= s;
m1.data[1][1] *= s;
return m1;
}
template<RealType T>
TMatrix2<T> operator+ (const TMatrix2<T>& m1, T s)
{
return TMatrix2<T>(m1(0, 0) + s, m1(0, 1) + s,
m1(1, 0) + s, m1(1, 1) + s);
}
template<RealType T>
TMatrix2<T> operator+ (const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
return TMatrix2<T>(m1(0, 0) + m2(0, 0), m1(0, 1) + m2(0, 1),
m1(1, 0) + m2(1, 0), m1(1, 1) + m2(1, 1));
}
template<RealType T>
TMatrix2<T> operator- (const TMatrix2<T>& m1, T s)
{
return TMatrix2<T>(m1(0, 0) - s, m1(0, 1) - s,
m1(1, 0) - s, m1(1, 1) - s);
}
template<RealType T>
TMatrix2<T> operator- (const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
return TMatrix2<T>(m1(0, 0) - m2(0, 0), m1(0, 1) - m2(0, 1),
m1(1, 0) - m2(1, 0), m1(1, 1) - m2(1, 1));
}
template<RealType T>
TMatrix2<T> operator* (const TMatrix2<T>& m1, T s)
{
return TMatrix2<T>(m1(0, 0) * s, m1(0, 1) * s,
m1(1, 0) * s, m1(1, 1) * s);
}
template<RealType T>
TMatrix2<T> operator/ (const TMatrix2<T>& m1, T s)
{
s = (T)1.0 / s;
return TMatrix2<T>(m1(0, 0) * s, m1(0, 1) * s,
m1(1, 0) * s, m1(1, 1) * s);
}
template<RealType T>
TMatrix2<T> operator* (const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
return TMatrix2<T>(m1(0, 0) * m2(0, 0) + m1(0, 1) * m2(1, 0), m1(0, 0) * m2(0, 1) + m1(0, 1) * m2(1, 1),
m1(1, 0) * m2(0, 0) + m1(1, 1) * m2(1, 0), m1(1, 0) * m2(0, 1) + m1(1, 1) * m2(1, 1));
}
template<RealType T>
TVector2<T, false> operator* (const TMatrix2<T>& m1, const TVector2<T, false>& v)
{
return TVector2<T, false>(m1(0, 0) * v.x + m1(0, 1) * v.y,
m1(1, 0) * v.x + m1(1, 1) * v.y);
}
template<RealType T>
bool operator== (const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
return m1[0] == m2[0] && m1[1] == m2[1];
}
template<RealType T>
bool operator!= (const TMatrix2<T>& m1, const TMatrix2<T>& m2)
{
return m1[0] != m2[0] || m1[1] != m2[1];
}
// ============================== //
// Matrix function definition //
// ============================== //
template<RealType T>
T Determinant(const TMatrix2<T>& m1)
{
return m1(0, 0) * m1(1, 1) - m1(0, 1) * m1(1, 0);
}
template<RealType T>
TMatrix2<T>& InverseV(TMatrix2<T>& m1)
{
float _1_det = 1.0f / Determinant(m1);
float m00 = m1(0, 0);
m1(0, 0) = m1(1, 1);
m1(0, 1) = -m1(0, 1);
m1(1, 0) = -m1(1, 0);
m1(1, 1) = m00;
m1 *= _1_det;
return m1;
}
template<RealType T>
TMatrix2<T>& TransposeV(TMatrix2<T>& m1)
{
Swap(m1(0, 1), m1(1, 0));
return m1;
}
// =============== //
// WITH RETURN //
// =============== //
template<RealType T>
TMatrix2<T> Inverse(TMatrix2<T>& m1)
{
float _1_det = 1.0f / Determinant(m1);
return TMatrix2<T>( m1(1, 1) * _1_det, -m1(0, 1) * _1_det,
-m1(1, 0) * _1_det, m1(0, 0) * _1_det);
}
template<RealType T>
TMatrix2<T> Transpose(const TMatrix2<T>& m1)
{
return TMatrix2<T>(m1(0, 0), m1(1, 0),
m1(0, 1), m1(1, 1));
}
template<RealType T>
bool IsIdentityMatrix(const TMatrix2<T>& m1, T threshold = P_FLT_INAC)
{
return (abs(m1(0, 0) - (T)1.0) < P_FLT_INAC && abs(m1(0, 1)) < P_FLT_INAC &&
abs(m1(1, 0)) < P_FLT_INAC && abs(m1(1, 1) - (T)1.0) < P_FLT_INAC);
}
} // Phanes::Core::Math
#endif // !MATRIX2_H
#include "Core/Math/SIMD/SIMDIntrinsics.h"